Unternehmen News
Bis zu 10 Metern Durchmesser und 1.500 Tonnen Gewicht: Wissenschaftler und Dillinger wollen gemeinsam maßgeschneiderte neue Stahlsorten für die riesigen Monopiles entwickeln und damit zur Senkung von Baukosten von Offshore-Windanlagen beitragen - Photo: Steelwind Nordenham
29.04.2021

Gemeinsames Forschungsprojekt

Wissenschaftler wollen mit Dillinger die Fundamentfertigung für Offshore-Windparks weiterentwickeln

Bei rund zehn Megawatt Leistung haben Windkraftanlagen auf offener See heute gewaltige Dimensionen. Ihr gigantisches Maschinenhaus mit Generator, Rotor und über hundert Meter langen Rotorblättern steht auf einem Stahlturm. Dieser wiederum ruht im Meer auf kolossalen Stahlrohren, den sogenannten Monopiles, mit aktuell bis zu zehn Metern Durchmesser und 1.500 Tonnen Gewicht. Damit diese für viele Jahre den Stürmen, Wellen und aggressivem Salzwasser trotzen und dennoch wirtschaftlich hergestellt werden können, wollen Materialforscher der Universität des Saarlandes und Maschinenbauer der RWTH Aachen gemeinsam mit dem Stahlspezialisten Dillinger und weiteren Firmen maßgeschneiderte neue Stahlsorten entwickeln. Das Forschungsprojekt wird vom Bundeswirtschaftsministerium mit 1,2 Millionen Euro gefördert.

Um die riesigen Stahlrohre für Offshore-Windparks anzufertigen, werden Grobbleche benötigt, wie sie das Stahlunternehmen Dillinger im Saarland herstellt. Die Bleche mit einer Wandstärke von etwa zehn Zentimetern werden zu Rohrstücken mit Durchmessern von bis zu zehn Metern zusammengeschweißt und dann bis zu einer Länge von über 80 Metern Stück für Stück durch weitere Schweißnähte miteinander verbunden. „Der Knackpunkt bei diesem Verfahren ist die enorme Hitze, die kurzzeitig an der Schweißnaht auf den Stahl einwirkt und das innere Gefüge des Materials verändert. Je dicker die Grobbleche sind und je schneller sie unter Produktionsbedingungen verschweißt werden, umso drastischer können Abweichungen im Gefüge rund um die Schweißnähte sein“, erklärt Frank Mücklich, Professor für Funktionswerkstoffe der Universität des Saarlandes.

Der Materialforscher hat mit seinem Team spezielle Analysetechniken entwickelt, mit denen man alle Veränderungen dieser inneren Struktur von Materialien quantitativ darstellen kann. Dafür setzt der Wissenschaftler hochauflösende Elektronen- und Ionenmikroskope bis hin zur Nano-Tomographie und Atomsonden-Tomographie ein. Die dabei erfassten Informationen und Bildserien auf verschiedenen Größenskalen werden anschließend im Computer wieder zum exakten räumlichen Abbild des Stahlgefüges zusammengefügt – bis hin zum einzelnen Atom.

„Wir erkennen dadurch auf der Mikro- und Nanoebene sowie der atomaren Skala, an welcher Stellschraube man drehen muss, um einen Werkstoff so zu verändern, dass er die gewünschten Eigenschaften erhält“, erläutert Frank Mücklich, der auch das Steinbeis-Forschungszentrum für Werkstofftechnik auf dem Saarbrücker Uni-Campus leitet.

Gemeinsam mit den Monopile-Produzenten EEW Special Pipe Constructions, Sif Group und dem Schweißzusatz- und Stromquellenhersteller Lincoln Electric arbeiten die Projektpartner nun daran, den Stahl der Grobbleche für die Schweißverfahren beim Bau von Offshore-Windkraftanlagen weiter zu optimieren.

„Dillinger hat in den letzten Jahren zukunftsweisende Investitionen getätigt und Innovationen vorangetrieben, um die Bleche für den anspruchsvollen Monopile-Markt weiter zu entwickeln“, erläutert der promovierte Materialwissenschaftler und Schweißfachingenieur Sebastian Scholl von Dillinger.

Damit habe Dillinger bereits deutlich die Produktivität steigern können und zu einer Senkung von Baukosten für Offshore Windanlagen beigetragen. Hierbei sei wichtig, so Scholl, auch die Effizienz der Weiterverarbeitung, also die maximal ertragbare Schweißgeschwindigkeit der Stahlgüten von Dillinger weiter zu erhöhen. Dabei spielen moderne Schweißverfahren für Grobbleche, etwa das Mehrdraht-Unterpulverschweißen oder das Elektronenstrahlschweißen, eine zentrale Rolle.

„Der nächste wichtige Schritt wird sein, die Fertigungszeit zu reduzieren. Dies kann durch Hochleistungsschweißverfahren erreicht werden. Gemeinsam mit unseren Partnern wollen wir daher in diesem Forschungsprojekt einen Stahl entwickeln, der diese hohen Anforderungen erfüllt“, sagt Scholl.

Diesem stimmt Professor Uwe Reisgen, Leiter des RWTH-Instituts für Schweißtechnik und Fügetechnik, zu: „Solch enorme Stahlkonstruktionen sind ohne Schweißtechnik völlig undenkbar. Wir brauchen für die riesigen Stückzahlen sowohl hocheffiziente Schweißverfahren als auch maßgeschneiderte Werkstoffe. Sie müssen sich mit den Hochleistungsschweißverfahren ohne Verlust ihrer mechanisch-technologischen Eigenschaften gut verarbeiten lassen. Ich bin sehr erfreut, dass ein hochkompetentes Stahlunternehmen wie Dillinger diesen Weg gemeinsam mit uns beschreiten möchte.“

Im Rahmen des Energieforschungsprogramms „Innovationen für die Energiewende“ fördert das Bundeswirtschaftsministerium das Verbundprojekt mit 1,2 Millionen Euro. Insgesamt hat das Forschungsprojekt ein Finanzvolumen von mehr als 1,9 Millionen Euro.

„Wir wollen damit nicht nur dazu beitragen, dass die erneuerbaren Energien weiter ausgebaut werden, sondern auch, dass Produktionsstandorte in Deutschland und Europa gesichert werden“, erläutert Materialforscher Frank Mücklich.

(Quelle: SHS – Stahl-Holding-Saar GmbH & Co. KGaA )

 

 

Schlagworte

DillingerRWTH AachenSHS – Stahl-Holding-Saar GmbH & Co. KGaASteelwind NordenhamUniversiät des Saarlandes

Verwandte Artikel

Vertragsunterzeichnung
14.11.2024

Hochofen- und Direktreduktions-Pellets für saarländischen Stahl

ROGESA und der brasilianische Eisenerz-Produzent Vale unterzeichnen mehrjährigen Liefervertrag für Hochofen- und Direktreduktions-Pellets.

CO2 Dillinger Direktreduktion DRI-Anlage Einsatzstoffe Elektrolichtbogenofen Emissionen EU Inbetriebnahme Kooperation Lichtbogenofen Rogesa Roheisen Saarstahl Saarstahl AG SHS Stahl Stahlindustrie Stahlproduktion Transformation Umwelt Vertrieb Wasserstoff
Mehr erfahren
Auf verbesserte Schweißeigenschaften von grünem Stahl kommt es an
06.11.2024

Forschung für Schweissen von recyceltem Stahl gestartet

Das Projekt MOWSES startet , um die sichere Anwendung von recyceltem Stahl in kritischen Infrastrukturen zu verbessern, indem es sich auf Schweißverbindungen von mittel-...

ArcelorMittal Blech Bleche CO2 Deutschland Dillinger Elektrolichtbogenofen Emissionen Energie Entwicklung Essen EU Gesellschaft Green Steel Hochofen HZ IMU Industrie ING Innovation Klima Konstruktion Lichtbogenofen Nachhaltigkeit Niederlande Optimierung Produktion RWTH RWTH Aachen Saarland Schrott Schweißen Stahl Stahlblech Stahlerzeugung Stahlindustrie Stahlkonstruktion Stahlproduktion USA
Mehr erfahren
Zahlreiche Teilnehmende der GROWTH Convention haben sich über die Zukunft der nachhaltigen Materialien informiert.
28.10.2024

80 Teilnehmende auf der GROWTH Convention

Nachhaltige Technologien können die Industrie revolutionieren. Dies hat die diesjährige GROWTH Convention, die am 24. Oktober im eMotion Center der GMH Gruppe stattfand,...

Automobil CO2 CO2-Emissionen Deutschland Elektrolichtbogenofen Emissionen Energie Entwicklung Ergebnis Essen EU Forschung GMH Industrie ING Innovation Klima Konferenz Lichtbogenofen Politik Produktion Produktionsprozess Recycling RWTH RWTH Aachen Schrott Stahl Unternehmen USA Wasserstoff Werkstoff Werkstoffe Wirtschaft Zusammenarbeit
Mehr erfahren
Das Areal am Standort von Saarstahl in Völklingen, Deutschland, auf dem das große Umspannwerk von Primetals Technologies errichtet wird.
25.10.2024

Auftrag für Elektrostahlwerk-Umspannwerk erteilt

Saarstahl hat Primetals Technologies den Auftrag für ein neues Umspannwerk in Völklingen erteilt. Dies stellt das Bindeglied zwischen dem Stromnetz und einem neuen EAF da...

Aluminium Aluminiumindustrie Anlagen Anlagenbau Automobil Bund Deutschland Dillinger DRI-Anlage Elektrolichtbogenofen Elektrostahlwerk Energie EU Gesellschaft HZ Inbetriebnahme Industrie ING KI Klima Lichtbogenofen Lieferung Midrex Primetals Produktion Rogesa Saarstahl Stahl Stahlwerk Studie Tageszeitung Unternehmen USA Völklingen
Mehr erfahren
23.10.2024

Erste Monopiles für Windpark Baltic Power geliefert

Die Steelwind Nordenham GmbH produziert insgesamt 78 Monopiles für den Windpark Baltic Power in der polnischen Ostsee. Nun fanden in Nordenham die ersten Verladungen stat...

CO2 CO2-Emissionen Emissionen Energie ING Offshore Polen Produktion SHS Stahl Steelwind Nordenham Unternehmen Windpark
Mehr erfahren