Forschung
Photo: pixabay
05.07.2021

Forscher arbeiten an Eisengewinnung im Wasserstoffplasma

3,5 Milliarden Tonnen Kohlendioxid jährlich einsparen

Deutschland, Europa und fast alle Länder der Welt streben eine klimaneutrale Wirtschaft an. Das bedeutet, so viel CO2-Emissionen wie möglich einzusparen und die verbleibenden Emissionen zu kompensieren. Doch dieses Ziel wird mit der heutigen Technik kaum erreicht. Einer der größten industriellen CO2-Emittenten, die Eisen- und
Stahlindustrie, hat bisher noch keine Möglichkeit in großem Stil grünen Stahl zu produzieren und ist bis heute für etwa 7% aller CO2-Emissionen weltweit verantwortlich.

Angesichts dieser Herausforderungen erforscht ein Team des Max- Planck-Instituts für Eisenforschung (MPIE) die Möglichkeit, Wasserstoffplasma für die Reduktion von Eisenerz anstelle von Koks oder reformiertem Erdgas einzusetzen. Ihre neuesten Ergebnisse veröffentlichten die Wissenschaftlerinnen und Wissenschaftler in der Fachzeitschrift Acta Materialia.

„Die Verwendung von reinem Wasserstoff anstelle von Koks oder reformiertem Erdgas zur Reduktion von Eisenerz kann ein Weg sein, um CO2-Emissionen einzusparen. Allerdings erfordert die chemische Reaktion mit reinem Wasserstoff eine externe Energiezufuhr. Die Verwendung von Wasserstoffplasma dahingegen erlaubt die Reduktion mit weniger Energie durchzuführen. Während der Reduktion von Eisenerz im Lichtbogenofen, kollidieren H2-Moleküle aufeinander und mit Elektronen, was zur Bildung von hochener-getischem Wasserstoff führt. Dieser gibt seine Energie teilweise an der Reaktionsgrenzfläche zwischen Oxid und Plasmalichtbogen ab. Diese freigesetzte Energie wiederum wird für die Reduktionsreaktion benötigt. Der ganze Prozess ist also exotherm, da er keine externe Energiezufuhr braucht. Deshalb ist der Einsatz von Wasserstoffplasma anstelle von reinem Wasserstoff hier vorteilhaft.“, erklärt Dr. Isnaldi Souza, Postdoktorand am MPIE und Erstautor der Publikation.

Der Einsatz von Wasserstoffplasma hat noch einen weiteren Vorteil: Eisenerz kann in einem einzigen Schritt gleichzeitig geschmolzen und reduziert werden, ohne nachträgliche Agglomerations- oder Raffinationsprozesse.

„Wir haben die Nano- Chemie, die Grenzflächenstruktur und -zusammensetzung sowie die Kinetik der Phasenumwandlung untersucht. Unsere Ergebnisse zeigen, dass der Einsatz von Wasserstoffplasma in den etablierten industriellen Elektroöfen ohne größere Modifikationen stattfinden könnte. Dennoch untersuchen wir weiter mögliche Auswirkungen des Wasserstoffplasmas auf die Elektroden- und Ofenmaterialien", sagt Dr. Yan Ma, Postdoc im gleichen Team mit Souza und Mitautor der Veröffentlichung.

Die neuesten MPIE-Untersuchungen zeigen die Thermodynamik und Kinetik der Wasserstoff-Plasma-Reduktion von Eisenerzen und bieten damit einen alternativen Weg für die Herstellung von grünem Stahl. Generell wurden am MPIE mehrere Gruppen eingerichtet, die sich mit den verschiedenen Aspekten nachhaltiger Metalle beschäftigen. Souza und Ma arbeiten beide in der abteilungsübergreifenden Gruppe „Physical Metallurgy of Sustainable Alloys“. Verwandte Gruppen sind „Hydrogen in Materials“, „Hydrogen Mechanics and Interfaces“, „Computational Sustainable Metallurgy“ und in Kooperation mit der RWTH Aachen die Gruppe „Sustainable Materials Science and Technology“.

(Quelle: Max-Planck-Institut für Eisenforschung GmbH)

 

Reduktion von Eisenerz mit Wasserstoffplasma: (1) Hämatit wird in den Lichtbogenschmelzofen gegeben, in dem der Prozess durchgeführt wird. Der Ofen ist mit einer Wolframelektrode ausgestattet und mit einem Gasgemisch aus Ar-10% H2 gefüllt. (2) Bild des Reduktionsprozesses, bei dem Wasserstoffplasma zwischen der Spitze der Elektrode und dem Eingangsmaterial gezündet wird. Das Erz wird gleichzeitig geschmolzen und reduziert. (3) Foto einer teilweise reduzierten Probe nach 5 Minuten Einwirkzeit des Plasmas. Eisen ist im unteren Teil der Probe zu sehen (hellgraue Bereiche). Der obere Teil (dunkelgrau) der Probe besteht aus verbleibendem, nicht reduziertem Eisenoxid (hauptsächlich Wüstit, FexO). (4) Mikrostrukturelle Charakterisierung der Probe, durchgeführt mittels Elektronenrückstreubeugung (EBSD). Die EBSD-Karte zeigt die räumliche Phasenverteilung, die aus dem durch den gelben Rahmen in (4) hervorgehobenen Bereich gewonnen wurde. In dieser Karte sind verbleibender Wüstit und Eisen in grün bzw. rot dargestellt. (5) Nanochemische Analyse mittels Atomsonden-Tomographie (APT) an der Phasengrenzfläche zwischen Wüstit und Eisen. Fe- und O-Atome sind in rosa bzw. blau dargestellt. - © Isnaldi Souza, Max-Planck-Institut für Eisenforschung GmbH
© Isnaldi Souza, Max-Planck-Institut für Eisenforschung GmbH

Schlagworte

grüner StahlMPIeWasserstoff

Verwandte Artikel

Von links: Dr. Bernd Pitschak und Friedericke Lassen
03.03.2025

Wasserstoffverband mit neuem Vorstandsvorsitzenden

Der Deutsche Wasserstoff-Verband (DWV) hat einen neuen Vorstandsvorsitzenden. Dr. Bernd Pitschak wurde vom DWV-Präsidium bestellt. Friederike Lassen, die im Herbst bestel...

Berlin Bund Dekarbonisierung Deutschland DSV Energie Energiewende EU Geschäftsführung Gesellschaft ING Investition Politik Umwelt USA Wasserstoff Wirtschaft WV
Mehr erfahren
Vertragsunterzeichnung bei TOSYALI SULB (von links nach rechts): Guido Bonelli, Paul Wurth Italia; Fuat Tosyali, TOSYALI Holding; K.C. Woody, Midrex).
26.02.2025

Midrex und SMS mit Lieferung einer DRI-Anlage beauftragt

TOSYALI SULB Steel Industries, ein Zusammenschluss von TOSYALI und der Libya United Steel Company for Iron & Steel Industry (SULB), haben den Auftrag vergeben. Das Projek...

Anlagen Dekarbonisierung DRI-Anlage Emissionen Entwicklung Erdgas EU HZ Inc. Industrie ING Investition KI Lieferung Metallindustrie Nachhaltigkeit Partnerschaft Paul Wurth Produktion SMS SMS group Stahl Stahlerzeugung Stahlindustrie Stahlproduktion Unternehmen USA Wasserstoff Wirtschaft Wurth Zusammenarbeit
Mehr erfahren
Der Kranhersteller Fassi sieht Potenziale für seine Produkte
26.02.2025

SSAB liefert CO₂-reduzierten Stahl an Kranhersteller

SSAB und der Kranhersteller Fassi haben eine Vereinbarung über zukünftige Lieferungen von Stahl getroffen. Dieser wird sowohl aus Eisenerz als auch aus recyceltem Schrott...

Biogas Bund CO2 Dekra Emissionen Energie EU Fossilfreien Stahl Fossilfreier Stahl Hybrit ING Innovation Italien Klima Kran Lieferung Nachhaltigkeit Optimierung Partnerschaft Produktion Recycling Schrott Stahl Stahlherstellung Stahlproduktion Technik Unternehmen USA Vereinbarung Wasserstoff Zusammenarbeit
Mehr erfahren
Hubbalkenofen bei ArcelorMittal in Duisburg
06.02.2025

Neue Sauerstoffbrenner für Hubbalkenofen

Mit der Umstellung auf zwei Sauerstoffbrenner am Hubbalkenofen im Drahtwalzwerk hat ArcelorMittal Duisburg einen weiteren Schritt in Richtung mehr Nachhaltigkeit getan. B...

ArcelorMittal Automobil Brenner CO2 Dekarbonisierung Draht Drahtwalzwerk Duisburg Einsparung Emissionen Energie Energieeffizienz Erdgas EU Hubbalkenofen Industrie ING Klima Klimaziel Klimaziele Maschinenbau Nachhaltigkeit Umwelt Unternehmen Walzwerk Wasserstoff
Mehr erfahren
Dr. Martin Theuringer
05.02.2025

Theuringer wechselt zum Bundesverband der Gießerei-Industrie

Der Bundesverband der Deutschen Gießerei-Industrie (BDG) besetzt seine Hauptgeschäftsführung neu. Auf Max Schumacher wird Dr. Martin Theuringer folgen. Er wechselt von de...

Berlin Bund CO2 Deutschland Energie EU Forschung Geschäftsführung Handel HZ Industrie ING KI Nachhaltigkeit Politik Seminar Stahl Statistik Studie Umwelt Wasserstoff Weltstahlverband Weltwirtschaft Wirtschaft WV WV Stahl
Mehr erfahren