Trendthema Forschung
Chemische Heterogenität innerhalb der Mikrostruktur führt zu einer verbesserten Beständigkeit gegen wasserstoffinduzierte Rissbildung - Bild: MPIE
14.07.2021

Wie die Ausbreitung Wasserstoff-induzierter Risse in Stählen gestoppt wird

Während Politik, Industrie und Forschung darauf hinarbeiten, Wasserstoff als nachhaltigen Energieträger zu nutzen, ist die Wasserstoffversprödung von hochfesten Legierungen zu einem der Hauptprobleme geworden, die die Realisierung der Wasserstoffwirtschaft behindern. Hochfeste Legierungen werden in der Automobil- und Luftfahrtindustrie nicht nur für den Bau von Leichtbaukomponenten benötigt, sondern auch in Bauteilen, die zur Speicherung und zum Transport von Wasserstoff eingesetzt werden. Wissenschaftler*innen des Max-Planck-Instituts für Eisenforschung (MPIE) und ihre Kolleg*innen von der Tsinghua University China und der Norwegian University of Science and Technology haben einen Weg gefunden, wasserstoffinduzierte Risse in hochfesten Stählen zu stoppen. Das Forscherteam veröffentlichte ihre Ergebnisse in der Fachzeitschrift Nature Materials.

„Stähle machen 90 % des weltweiten Marktes für Metalllegierungen aus und hochfeste Stähle können besonders anfällig für Wasserstoffversprödung sein. Deshalb war es unser Ziel, eine kostengünstige, skalierbare Strategie zu finden, um hochfeste Stähle unter Beibehaltung ihrer mechanischen Leistungsfähigkeit widerstandsfähiger gegen Wasserstoff zu machen.“, erklärt Dr. Binhan Sun, Postdoktorand, Themenleiter für Wasserstoffversprödung in Hochleistungslegierungen am MPIE und Erstautor der Publikation.

Die Wissenschaftler*innen implementierten manganreiche Bereiche in die Mikrostruktur des Stahls, um Risse abzustumpfen und Wasserstoff darin einzufangen und so die Rissausbreitung zu stoppen. „Wir haben unsere Methode mit hochfesten Manganstählen getestet, in denen wir eine extrem hohe Anzahldichte (über ~2 × 1018 m-3) von manganreichen Pufferzonen erzeugt haben. Diese Pufferzonen stellen Sackgassen für Risse dar, indem sie scharfe Risse abstumpfen. Dadurch wird der Stahl doppelt so widerstandsfähig gegen Wasserstoff wie herkömmliche chemisch homogene Stähle, unabhängig davon, wann und wie Wasserstoff in das Material eingedrungen ist“, sagt Dr. Dirk Ponge, Leiter der MPIE-Gruppe „Mechanism-based Alloy Design“, der das Forschungsprojekt betreut. Die vorgestellte Methode lässt sich prinzipiell auf über 10 etablierte Stahlsorten anwenden. Mögliche Anwendungen sehen die Wissenschaftler*innen auch für andere Legierungssysteme (z.B. mehrphasige Titanlegierungen), die fest, duktil und wasserstoffbeständig sein sollen. Bevor jedoch das Spektrum der Legierungen erweitert wird, wollen die Forscher*innen nun verschiedene Methoden finden, um Pufferzonen mit chemischer Heterogenität innerhalb des Gefüges präzise zu erzeugen. Diese verschiedenen Methoden könnten den Effekt der Rissbeständigkeit weiter verstärken und besser zu den etablierten industriellen Verarbeitungsrouten passen.

(Quelle: Max-Planck-Institut für Eisenforschung)

Schlagworte

AutomobilChinaEisenforschungEnergieErgebnisEUForschungForschungsprojektIndustrieINGLegierungenLeichtbauMax-Planck-InstitutMPIePolitikStahlStrategieTransportWasserstoffWirtschaft

Verwandte Artikel

Ambrians Hafeninfrastruktur für das zukünftige CO2-Terminal in Bremen
30.04.2025

Positive Studie für CO₂-Terminal im Hafen Bremen

Die geplante Infrastruktur könnte einen entscheidenden Beitrag zur Umsetzung von Carbon Capture & Storage (CCS) in Deutschland leisten

Bremen CO2 Deutschland Emissionen EU Industrie Klage Klima Klimaziel Klimaziele Lieferung Logistik Machbarkeitsstudie Messe Partnerschaft Service Studie Transport Unternehmen Wirtschaft
Mehr erfahren
30.04.2025

Salzgitter AG erhält Bestnote „A“ im CDP-Rating

Die Salzgitter AG ist von der renommierten globalen Non-Profit-Organisation CDP mit der Bestnote „A“ für ihr Engagement im Bereich Klimaschutz ausgezeichnet worden.

2016 Auszeichnung CDP CO2 Dekarbonisierung Deutschland DSV EU HZ Industrie ING Innovation KI Klima Klimaschutz Klimaziel Klimaziele Ltd Partnerschaft Stahl Stahlerzeugung Stahlherstellung Strategie Transformation Umwelt Unternehmen USA Vorstand Wasserstoff Wasserstoffbasiert Wettbewerb Zusammenarbeit
Mehr erfahren
Vertreter von Hoa Phat und Primetals Technologies bei der Vertragsunterzeichnung.
29.04.2025

Hoa Phat baut Kapazitäten für Walzdraht, Stabstahl und schwere Profile aus

Der vietnamesische Stahlkonzern investiert in eine neue Stranggießanlage und ein neues Drahtwalzwerk

Anlagen Automatisierung Baustahl Bund Draht Drahtwalzwerk Energie Inbetriebnahme Industrie Langprodukte Lieferung Optimierung Partnerschaft Primetals Produktion Profile Prozessautomatisierung Prozessoptimierung Stahl Stahlindustrie Stahlproduktion Steuerung Stranggießanlage Temperatur Transformation Unternehmen Vorstand Walzstraße Walzwerk
Mehr erfahren
Computergrafik des neuen integrierten Elektrostahlwerks von SSAB in Luleå
29.04.2025

SSAB sichert die Finanzierung des Transformationsprojekts

Der schwedische Stahlhersteller SSAB hat sich ein Finanzierungspaket in Höhe von 2,3 Milliarden Euro für den Bau eines hochmodernen, klimafreundlichen Elektrostahlwerks i...

Bandverzinkung CO2 Einsatzstoffe Eisenschwamm Elektrostahlwerk Emissionen EU Finanzierung Industrie ING Investition Italien Kaltwalzkomplex Klima Metallurgie Nachhaltigkeit Produktion Recycling Roheisen Schmelze Schmelzen Schrott Schweden Stahl Stahlindustrie Stahlproduktion Stahlwerk Strategie Transformation Unternehmen Vorstand Walzwerk Wettbewerb
Mehr erfahren
Dr. Heather Wijdekop
28.04.2025

thyssenkrupp Materials Services mit neuer Bereichsleiterin

Dr. Heather Wijdekop wird zum 1. Juli 2025 CEO der Business Unit Processing von thyssenkrupp Materials Services. Darüber hinaus wird Dr. Wijdekop die Operating Unit Proce...

Anarbeitung Automobil Coils EU HZ IJmuiden Industrie ING Investition Karriere Lieferketten Nordamerika Produktion Service Strategie Tata Steel Technik Thyssen thyssenkrupp Thyssenkrupp Materials Services Unternehmen Vertrieb Walzwerk Werkstoff Werkstoffe Werkstofftechnik
Mehr erfahren