Widerstandspunktgeschweißte Verbindungen von Mehrphasenstählen unter zyklischer Belastung
Gesetzliche Vorschriften und wachsende Anforderungen im Automobilbereich erfordern einen Ansatz im Karosseriebau aus innovativen Leichtbaukonzepten mit höchstfesten Stahlvarianten wie Dual- und Komplexphasenstählen. Diese ermöglichen durch ihre herausragende Festigkeit bei gleichzeitig guten Umformeigenschaften eine wirksame Gewichtseinsparung. Kenntnisse über die Werkstoffeignung für das Widerstandspunktschweißen und die Verbindungseigenschaften, insbesondere im Bereich der Schwingfestigkeit sind notwendig, um diese Verbindungstechnik weiter mit Erfolg einzusetzen.
Der vollständige Artikel ist erschienen in STAHL+TECHNIK 2 (2020) Nr. 3, S. 56 ff.
Gesetzliche Vorgaben zur Verringerung der CO2-Emissionen und die wachsenden Anforderungen an die Fahrzeugsicherheit, die Funktionalität und den Komfort veranlassen die Automobilindustrie, auf innovative und effiziente Leichtbaukonzepte zu setzen [1]. Die höchstfesten Mehrphasenstähle ermöglichen eine Reduzierung des Fahrzeuggewichts und somit der CO2-Emissionen [2]. Dual- (DP-Stähle) und Komplexphasenstähle (CP-Stähle) stehen bei einer Vielzahl technischer Anwendungen verstärkt im Fokus. Das Widerstandspunktschweißen ist aufgrund des hohen Automatisierungsgrades und der hohen Fertigungssicherheit immer noch das vorherrschende Fügeverfahren, das durch den Einsatz von Mehrphasenstählen besonders vor neue Herausforderungen gestellt wird [3]. Damit das Trag- und Verformungsverhalten der Schweißverbindungen unter zyklischer Belastung hinreichend genau vorhergesagt werden kann, müssen Kennwerte bzw. eine Datenbasis für die unterschiedlichen Einsatzgebiete ermittelt und entsprechende Optimierungsmaßnahmen eingeleitet werden. Hierzu sind umfangreiche Untersuchungen unter zyklischer Belastung erforderlich, die im Rahmen eines Forschungsvorhabens am Laboratorium für Werkstoff- und Fügetechnik (LWF) der Universität Paderborn durchgeführt wurden. Ausgewählte Ergebnisse aus diesen Untersuchungen sind im vorliegenden Beitrag aufgeführt.
Autoren: Dipl.-Ing. Gökhan Tümkaya, Dr.-Ing. David Hein, Prof. Dr.-Ing. Gerson Meschut, Laboratorium für Werkstoff- und Fügetechnik (LWF), Universität Paderborn, Paderborn.
Schlagworte
CO2-EmissionenForschungLeichtbauStahlverarbeitung